کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6313404 | 1619040 | 2016 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A new integrated in silico strategy for the assessment and prioritization of persistence of chemicals under REACH
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
SASDT50Matthew's correlation coefficientECHANRBPBTk-NNk-Nearest neighbor algorithmMCC(Q)SAR - (Q) SARUS EPA - EPA ایالات متحدهADI - NAMEPOPs - آلایندههای آلی دیرپاPersistent organic pollutants - آلایندههای آلی دیرپا(پایدار)United States Environmental Protection Agency - آژانس حفاظت از محیط زیست ایالات متحدهEuropean Chemicals Agency - آژانس مواد شیمیایی اروپاRegistration, Evaluation, Authorisation and Restriction of Chemicals - ثبت، ارزیابی، مجوز و محدودیت مواد شیمیاییapplicability domain - دامنه کاربردIn silico - درون رایانهای، این سیلیکوREACH - رسیدنPersistence - ماندگاریtrue positive - مثبت واقعیfalse positive - مثبت کاذبPersistent - مداومfalse negative - منفی اشتباهtrue negative - منفی واقعیHalf-lives - نیمه عمرStructural alerts - هشدار سازه
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم محیط زیست
شیمی زیست محیطی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The fact that chemicals can be recalcitrant and persist in the environment arouses concern since their effects may seriously harm human and environmental health. We compiled three datasets containing half-life (HL) data on sediment, soil and water compartments in order to build in silico models and, finally, an integrated strategy for predicting persistence to be used within the EU legislation Registration, Evaluation, Authorisation and restriction of CHemicals (REACH). After splitting the datasets into training (80%) and test sets (20%), we developed models for each compartment using the k-nearest neighbor algorithm (k-NN). Accuracy was higher than 0.79 and 0.76 respectively in the training and test sets for all three compartments. To support the k-NN predictions, we identified some structural alerts, using SARpy software, with a high-true positive percentage in the test set and some chemical classes related to persistence using the software IstChemFeat. All these results were combined to build an integrated model and to reach to an overall conclusion (based on assessment and reliability) on the persistence of the substance. The results on the external validation set were very encouraging and support the idea that this tool can be used successfully for regulatory purposes and to prioritize substances.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environment International - Volume 88, March 2016, Pages 250-260
Journal: Environment International - Volume 88, March 2016, Pages 250-260
نویسندگان
Fabiola Pizzo, Anna Lombardo, Marc Brandt, Alberto Manganaro, Emilio Benfenati,