کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6345349 | 1621224 | 2016 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada
ترجمه فارسی عنوان
ترکیب کامپوزیت های پیکسل لندست و تغییرات متریک با طرح های لیدار برای پیش بینی نقشه های جنگل و زیست توده های بیرونی در ساسکاچوان، کانادا
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
لیادور، لندست، کامپوزیت های پیکسل، تغییر معیارها، جنگل تصادفی تقلب،
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
کامپیوتر در علوم زمین
چکیده انگلیسی
Forest inventory and monitoring programs are needed to provide timely, spatially complete (i.e. mapped), and verifiable information to support forest management, policy formulation, and reporting obligations. Satellite images, in particular data from the Landsat Thematic Mapper and Enhanced Thematic Mapper (TM/ETM +) sensors, are often integrated with field plots from forest inventory programs, leveraging the complete spatial coverage of imagery with detailed ecological information from a sample of plots to spatially model forest conditions and resources. However, in remote and unmanaged areas such as Canada's northern forests, financial and logistic constraints can severely limit the availability of inventory plot data. Additionally, Landsat spectral information has known limitations for characterizing vertical vegetation structure and biomass; while clouds, snow, and short growing seasons can limit development of large area image mosaics that are spectrally and phenologically consistent across space and time. In this study we predict and map forest structure and aboveground biomass over 37 million ha of forestland in Saskatchewan, Canada. We utilize lidar plots-observations of forest structure collected from airborne discrete-return lidar transects acquired in 2010-as a surrogate for traditional field and photo plots. Mapped explanatory data included Tasseled Cap indices and multi-temporal change metrics derived from Landsat TM/ETM + pixel-based image composites. Maps of forest structure and total aboveground biomass were created using a Random Forest (RF) implementation of Nearest Neighbor (NN) imputation. The imputation model had moderate to high plot-level accuracy across all forest attributes (R2 values of 0.42-0.69), as well as reasonable attribute predictions and error estimates (for example, canopy cover above 2 m on validation plots averaged 35.77%, with an RMSE of 13.45%, while unsystematic and systematic agreement coefficients (ACuns and ACsys) had values of 0.63 and 0.97 respectively). Additionally, forest attributes displayed consistent trends in relation to the time since and magnitude of wildfires, indicating model predictions captured the dominant ecological patterns and processes in these forests. Acknowledging methodological and conceptual challenges based upon the use of lidar plots from transects, this study demonstrates that using lidar plots and pixel compositing in imputation mapping can provide forest inventory and monitoring information for regions lacking ongoing or up-to-date field data collection programs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Remote Sensing of Environment - Volume 176, April 2016, Pages 188-201
Journal: Remote Sensing of Environment - Volume 176, April 2016, Pages 188-201
نویسندگان
Harold S.J. Zald, Michael A. Wulder, Joanne C. White, Thomas Hilker, Txomin Hermosilla, Geordie W. Hobart, Nicholas C. Coops,