کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6384893 | 1626647 | 2014 | 10 صفحه PDF | دانلود رایگان |
- We model and test spatial distribution patterns of intertidal crabs.
- Consistent habitat associations were demonstrated for five species among estuaries.
- Results provide statistical models capable of predicting habitat associations.
- Models present a framework for improved understanding of spatial niche organization of intertidal crabs.
- Models are applicable to the large scale of dominant threats to estuaries.
Intertidal crab assemblages that are active on the sediment surface of tropical estuaries during tidal exposure play an important role in many fundamental ecosystem processes. Consequently, they are critical contributors to a wide range of estuarine goods and services. However, a lack of understanding of their spatial organization within a large landscape context prevents the inclusion of intertidal crabs into generally applicable ecological models and management applications. We investigated spatial distribution patterns of intertidal crabs within and among eight dry tropical estuaries spread across a 160Â km stretch of coast in North East Queensland, Australia. Habitat associations were modelled for five species based on photographic sampling in 40-80 sites per estuarine up- and downstream component: Uca seismella occurred in sites with little structure, bordered by low intertidal vegetation; Macrophthalmus japonicus occupied flat muddy sites with no structure or vegetation; Metopograpsus frontalis and Metopograpsus latifrons occupied sites covered with structure in more than 10% and 25% respectively. Finally, both Metopograpsus spp. and Metopograpsus thukuhar occupied rock walls. Habitat associations were predictable among estuaries with moderate to high sensitivity and low percentages of false positives indicating that simple, physical factors were adequate to explain the spatial distribution pattern of intertidal crabs. Results provide a necessary first step in developing generally applicable understanding of the fundamental mechanisms driving spatial niche organization of intertidal crabs within a landscape context.
Journal: Estuarine, Coastal and Shelf Science - Volume 149, 5 August 2014, Pages 133-142