کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6390702 1628405 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effect of binder on the physical stability and bactericidal property of titanium dioxide (TiO2) nanocoatings on food contact surfaces
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش تغذیه
پیش نمایش صفحه اول مقاله
Effect of binder on the physical stability and bactericidal property of titanium dioxide (TiO2) nanocoatings on food contact surfaces
چکیده انگلیسی
TiO2 is a promising photocatalyst for use in food processing environment as an antimicrobial coating. The purpose of this study was to determine the effect of different binding agents on the physical stability and bactericidal property of TiO2 nanocoatings created on stainless steel surfaces. A total of six different coating suspensions were prepared by mixing TiO2 (Aeroxide® P-25) nanoparticles (NPs) with three different types of binders (Shellac (A), polyuretahne (B), and polycrylic (C)) at a 1:4 to 1:16 NP to binder weight ratio. Bactericidal activity of these TiO2 coatings against Escherichia coli O157:H7 (5-strain) was determined at three different UV-A light intensities (0.25, 0.50 and 0.75 mW/cm2) for 3 h. The type of binder used in the coating had a significant effect on the log reduction of E. coli O157:H7. TiO2 coatings with binder C showed highest reduction (>4 log CFU/cm2) followed by TiO2 coating with binder B and A. Increasing the binder concentration in the formulation from a 1:4 to 1:16 weight ratio decreased the log reduction of E. coli O157:H7. Increasing the UV-A light intensity from 0.25 to 0.75 mW/cm2 increased the log reduction of bacteria for all the TiO2 coatings. The physical stability of the TiO2 coatings was determined using ASTM procedures. TiO2 coatings with binder B showed highest adhesion strength and scratch hardness when compared to coatings with other binders. However, on repeated use experiments (1, 3, 5, and 10 times), TiO2 coatings with binder C were found to be physically more stable and able to retain their original bactericidal property. The results of this study showed promise in developing durable TiO2 coatings with strong photocatalytic bactericidal property on food contact surfaces using appropriate binding agents to help ensure safe food processing environment.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Food Control - Volume 57, November 2015, Pages 82-88
نویسندگان
, ,