کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6409317 1629911 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Research papersProbabilistic prediction of hydrologic drought using a conditional probability approach based on the meta-Gaussian model
ترجمه فارسی عنوان
پیش بینی احتمال وقوع خشکسالی هیدرولوژیکی با استفاده از یک روش احتمالی شرطی بر اساس مدل متا گاوسی
کلمات کلیدی
پیش بینی خشکسالی، مدل متا گاوسی، توزیع مشروط، کاپولا، خشکسالی هیدرولوژیکی،
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
چکیده انگلیسی


- Propose a drought prediction method based on the conditional distribution.
- Predict hydrological drought incorporating meteorological drought conditions.
- Assess the prediction performance in Texas, USA based on climate division data.

Prediction of drought plays an important role in drought preparedness and mitigation, especially because of large impacts of drought and increasing demand for water resources. An important aspect for improving drought prediction skills is the identification of drought predictability sources. In general, a drought originates from precipitation deficit and thus the antecedent meteorological drought may provide predictive information for other types of drought. In this study, a hydrological drought (represented by Standardized Runoff Index (SRI)) prediction method is proposed based on the meta-Gaussian model taking into account the persistence and its prior meteorological drought condition (represented by Standardized Precipitation Index (SPI)). Considering the inherent nature of standardized drought indices, the meta-Gaussian model arises as a suitable model for constructing the joint distribution of multiple drought indices. Accordingly, the conditional distribution of hydrological drought can be derived analytically, which enables the probabilistic prediction of hydrological drought in the target period and uncertainty quantifications. Based on monthly precipitation and surface runoff of climate divisions of Texas, U.S., 1-month and 2-month lead predictions of hydrological drought are illustrated and compared to the prediction from Ensemble Streamflow Prediction (ESP). Results, based on 10 climate divisions in Texas, show that the proposed meta-Gaussian model provides useful drought prediction information with performance depending on regions and seasons.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hydrology - Volume 542, November 2016, Pages 772-780
نویسندگان
, , , , ,