کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6413889 1629979 2012 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Field experiments and numerical simulations of confined aquifer response to multi-cycle recharge-recovery process through a well
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Field experiments and numerical simulations of confined aquifer response to multi-cycle recharge-recovery process through a well
چکیده انگلیسی

SummaryShanghai is one of the cities suffering from land subsidence in China. Land subsidence has caused serious financial losses. Thus, artificial recharge measures have been adopted to compensate the drawdown in shallow, confined aquifers and thereby control land subsidence. In this study, a multi-cycle recharge-recovery field experiment was performed to investigate the response of a shallow, confined aquifer to artificial recharge through a well. In the experiment, a series of recharge-recovery cycles with different recharge volumes and durations, with and without artificial pressure, were performed. The water levels monitored in the recharge and observation wells indicated the response of the aquifer to the multi-cycle recharge-recovery process. Meanwhile, a finite-difference method (FDM) numerical model was established, and its parameters were obtained via a reversed numerical analysis on the experimental data. The responses of the shallow, confined aquifer to the multi-cycle recharge-recovery process were simulated in detail using the model. The calculation results showed that the water level dropped significantly when the recharge ended. Moreover, the efficiency of a multi-cycle recharge was found to be higher than that of a concentrated one under the same recharge volume and time. The relationship between recharge frequency and efficiency, expressed as H = 0.29498 f0.40163 and R2 = 0.97264, respectively, was obtained through the FDM numerical simulation. In the recharge intervals, the optimal recharge efficiency was achieved when the water level rose to 40% of the peak.

► We perform a multi-cycle recharge-recovery field experiment in a confined aquifer. ► We establish a numerical model via a reversed analysis on the experimental data. ► The piezometric heads declined significantly when the recharge ended. ► The efficiency of a multi-cycle recharge was higher than a concentrated one. ► The recharge interval was the best when the water level rose to 40% of the peak.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hydrology - Volumes 464–465, 25 September 2012, Pages 328-343
نویسندگان
, , , , , ,