کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6413896 | 1629979 | 2012 | 13 صفحه PDF | دانلود رایگان |

SummaryThis paper focuses on estimating river bathymetry for retrieving river discharge from the upcoming Surface Water and Ocean Topography (SWOT) satellite mission using a data assimilation algorithm coupled with a hydrodynamic model. The SWOT observations will include water surface elevation (WSE), its spatial and temporal derivatives, and inundated area. We assimilated synthetic SWOT observations into the LISFLOOD-FP hydrodynamic model using a local ensemble batch smoother (LEnBS), simultaneously estimating river bathymetry and flow depth. SWOT observations were obtained by sampling a “true” LISFLOOD-FP simulation based on the SWOT instrument design; the “true” discharge boundary condition was derived from USGS gages. The first-guess discharge boundary conditions were produced by the Variable Infiltration Capacity model, with discharge uncertainty controlled via precipitation uncertainty. First-guess estimates of bathymetry were derived from SWOT observations assuming a uniform spatial depth; bathymetric variability was modeled using an exponential correlation function. Thus, discharge and bathymetry errors were modeled realistically. The LEnBS recovered the bathymetry from SWOT observations with 0.52Â m reach-average root mean square error (RMSE), which was 67.8% less than the first-guess RMSE. The RMSE of bathymetry estimates decreased sequentially as more SWOT observations were used in the estimate; we illustrate sequential processing of 6Â months of SWOT observations. The better estimates of bathymetry lead to improved discharge estimates. The normalized RMSE of the river discharge estimates was 10.5%, 71.2% less than the first-guess error.
⺠River bathymetry was estimated from the data assimilation of SWOT observations. ⺠SWOT data were generated with a true LISFLOOD-FP model using the instrument design. ⺠Bathymetry and discharge errors were realistically modeled to produce first-guess. ⺠The accuracy of bathymetry was efficiently recovered using the assimilation scheme. ⺠The improved estimates of bathymetry lead to improved discharge estimates.
Journal: Journal of Hydrology - Volumes 464â465, 25 September 2012, Pages 363-375