کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6422858 1632035 2014 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part II. Higher-order methods for linear problems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part II. Higher-order methods for linear problems
چکیده انگلیسی

In this work, defect-based local error estimators for higher-order exponential operator splitting methods are constructed and analyzed in the context of time-dependent linear Schrödinger equations. The technically involved procedure is carried out in detail for a general three-stage third-order splitting method and then extended to the higher-order case. Asymptotical correctness of the a posteriori local error estimator is proven under natural commutator bounds for the involved operators, and along the way the known (non)stiff order conditions and a priori convergence bounds are recovered. The theoretical error estimates for higher-order splitting methods are confirmed by numerical examples for a test problem of Schrödinger type. Further numerical experiments for a test problem of parabolic type complement the investigations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 255, 1 January 2014, Pages 384-403
نویسندگان
, , ,