کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6423112 | 1341248 | 2011 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On finite difference approximation of a matrix-vector product in the Jacobian-free Newton-Krylov method
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The Jacobian-free Newton-Krylov (JFNK) method is a special kind of Newton-Krylov algorithm, in which the matrix-vector product is approximated by a finite difference scheme. Consequently, it is not necessary to form and store the Jacobian matrix. This can greatly improve the efficiency and enlarge the application area of the Newton-Krylov method. The finite difference scheme has a strong influence on the accuracy and robustness of the JFNK method. In this paper, several methods for approximating the Jacobian-vector product, including the finite difference scheme and the finite difference step size, are analyzed and compared. Numerical results are given to verify the effectiveness of different finite difference methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 236, Issue 6, 15 October 2011, Pages 1399-1409
Journal: Journal of Computational and Applied Mathematics - Volume 236, Issue 6, 15 October 2011, Pages 1399-1409
نویسندگان
Heng-Bin An, Ju Wen, Tao Feng,