کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6679839 1428064 2018 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin
ترجمه فارسی عنوان
تولید متان از طریق هضم بی هوازی: مشارکت و ویژگی هضم سلولز، همی سلولز و لیگنین
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
چکیده انگلیسی
Lignocellulosic biomass is the most abundant natural resource with high biomethane potential. However, complex structure of lignocellulosic biomass has hampered the efficient utilization of this bioresource. Previous studies have investigated the overall anaerobic digestion performance of lignocellulosic biomass, but the individual participation of each lignocellulosic component during anaerobic digestion remained unclear. Thus, this study investigated the methane production characteristics of cellulose, hemicellulose, lignin and their mixtures along with the microbial communities involved in anaerobic digestion. The results showed that the biomethane potential of cellulose was higher than that of hemicellulose; however, hemicellulose was hydrolysed more quickly than cellulose, while lignin was very difficult to be digested. The higher concentrations of acetic, n-butyric and n-valeric acids hydrolysed from the hemicellulose resulted in a lower pH and more severe inhibition on methane production than that of cellulose, and the methanogenesis gradually recovered after pH adjustment. The co-digestion of cellulose and hemicellulose increased the methane yield and biodegradability compared to mono-digestions. The addition of lignin to cellulose brought more significant decrease in the methane yield of cellulose than that of hemicellulose. Substrate-related bacteria such as Clostridium sensu stricto, Lutaonella, Cloacibacillus and Christensenella showed higher relative abundance in cellulose digestate, and sugar-fermenting bacteria such as Saccharofermentans, Petrimonas and Levilinea were more rich in the digestate of hemicellulose. Moreover, methanogenic Methanospirillum and Methanothrix likely contributed to the methane production of cellulose, while aciduric methanogens from Methanobrevibacter, Methanomassiliicoccus, Methanobacterium and Methanoculleus contributed to that of hemicellulose. This study provides a deeper understanding of the mechanism in the bioconversion of lignocellulosic biomass during anaerobic digestion.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Energy - Volume 226, 15 September 2018, Pages 1219-1228
نویسندگان
, , , , , , ,