کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7476200 | 1485195 | 2018 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Statistical monitoring of a wastewater treatment plant: A case study
ترجمه فارسی عنوان
نظارت آماری از یک گیاه تصفیه فاضلاب: مطالعه موردی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
The efficient operation of wastewater treatment plants (WWTPs) is key to ensuring a sustainable and friendly green environment. Monitoring wastewater processes is helpful not only for evaluating the process operating conditions but also for inspecting product quality. This paper presents a flexible and efficient fault detection approach based on unsupervised deep learning to monitor the operating conditions of WWTPs. Specifically, this approach integrates a deep belief networks (DBN) model and a one-class support vector machine (OCSVM) to separate normal from abnormal features by simultaneously taking advantage of the feature-extraction capability of DBNs and the superior predicting capacity of OCSVM. Here, the DBN model, which is a powerful tool with greedy learning features, accounts for the nonlinear aspects of WWTPs, while OCSVM is used to reliably detect the faults. The developed DBN-OCSVM approach is tested through a practical application on data from a decentralized WWTP in Golden, CO, USA. The results from the DBN-OCSVM are compared with two other detectors: DBN-based K-nearest neighbor and K-means algorithms. The results show the capability of the developed strategy to monitor the WWTP, suggesting that it can raise an early alert to the abnormal conditions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Environmental Management - Volume 223, 1 October 2018, Pages 807-814
Journal: Journal of Environmental Management - Volume 223, 1 October 2018, Pages 807-814
نویسندگان
Fouzi Harrou, Abdelkader Dairi, Ying Sun, Mohamed Senouci,