کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7562602 | 1491521 | 2016 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On-line quality prediction of batch processes using a new kernel multiway partial least squares method
ترجمه فارسی عنوان
پیش بینی کیفیت در خط فرایندهای دسته ای با استفاده از یک روش حداقل مربعات جزئی چند بعدی کرنل
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
فرآیند دسته ای، حداقل مربعات جزئی، کرنل جزئی ترین مربع، انتخاب بردار ویژگی، پیش بینی آنلاین، نظارت بر فرآیند،
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
چکیده انگلیسی
The conventional data-driven soft sensor methods such as multiway partial least squares have been encountering nonlinear problems in predictions of batch processes, and kernel methods have been used to deal with these problems. In this work, a new data-driven soft sensor method is proposed by developing a Reduced Dual Kernel multiway partial least squares algorithm. First, the number of kernel vectors is reduced by the feature vector selection method. Then, by projecting both input data and the output data into two reduced kernel spaces, dual kernel matrices are established. These two matrices can be used to build PLS models. Finally, the predicted data in the kernel space can be reversely projected onto its original space during online prediction. Comparisons were made among the proposed method and some pervious algorithms through a numerical example and an Escherichia coli fermentation batch process.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemometrics and Intelligent Laboratory Systems - Volume 158, 15 November 2016, Pages 138-145
Journal: Chemometrics and Intelligent Laboratory Systems - Volume 158, 15 November 2016, Pages 138-145
نویسندگان
Xichang Wang, Pu Wang, Xuejin Gao, Yongsheng Qi,