کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7563295 1491532 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Practical comparison of sparse methods for classification of Arabica and Robusta coffee species using near infrared hyperspectral imaging
ترجمه فارسی عنوان
مقایسه عملی روش های پراکنده برای طبقه بندی انواع قهوه عربی و روبوستا با استفاده از تصاویر هیپرتروکسی نزدیک مادون قرمز
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
چکیده انگلیسی
In the present work sparse-based methods are applied to the analysis of hyperspectral images with the aim at studying their capability of being adequate methods for variable selection in a classification framework. The key aspect of sparse methods is the possibility of performing variable selection by forcing the model coefficients related to irrelevant variables to zero. In particular, two different sparse classification approaches, i.e. sPCA + kNN and sPLS-DA, were compared with the corresponding classical methods (PCA + kNN and PLS-DA) to classify Arabica and Robusta coffee species. Green coffee samples were analyzed using near infrared hyperspectral imaging and the average spectra from each hyperspectral image were used to build training and test sets; furthermore a test image was used to evaluate the performances of the considered methods at pixel-level. In our case, sparse methods led to similar results as classical methods, with the advantage of obtaining more interpretable and parsimonious models. An important result to highlight is that variable selection performed with two different sparse classification approaches converged to the selection of same spectral regions, which implies the chemical relevance of those regions in the discrimination of Arabica and Robusta coffee species.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemometrics and Intelligent Laboratory Systems - Volume 146, 15 August 2015, Pages 503-511
نویسندگان
, , ,