کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7615450 | 1493992 | 2018 | 28 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Capillary electrophoresis-mass spectrometry for targeted and untargeted analysis of the sub-5â¯kDa urine metabolome of patients with prostate or bladder cancer: A feasibility study
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Targeted and untargeted analyses of the sub-5â¯kDa urine metabolome of genitourinary cancer patients (prostate and/or bladder) were performed without chemical derivatization using capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS). For targeted analysis, endogenous levels of sarcosine and 5 other amino acid metabolites implicated in the progression of prostate cancer were quantified in four patients and in a pooled urine sample from healthy volunteers. An untargeted analysis (m/z 50 to 850) of patient urine was performed using the same CE-ESI-MS system identifying over 400 distinct molecular features per patient. All patient urine samples were collected at prostatectomy/cystectomy via catheter. Patient urine samples were filtered by centrifugation, with endogenous sarcosine enriched by solid-phase extraction, and the processed samples loaded onto CE-ESI-MS for analysis. Diagnostic information, digital pathological slides, and tissue samples were collected and stored in a comprehensive biobanking database. The introduction of urine sample collection into the surgery workflow was facile and is a promising strategy for addressing the translational research challenge of moving smoothly from “chromatogram to nomogram”.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Chromatography B - Volumes 1074â1075, 1 February 2018, Pages 79-85
Journal: Journal of Chromatography B - Volumes 1074â1075, 1 February 2018, Pages 79-85
نویسندگان
Matthew S. MacLennan, Miranda G.M. Kok, Laiel Soliman, Alan So, Antonio Hurtado-Coll, David D.Y. Chen,