کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8055656 | 1519909 | 2018 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Efficient and automatic image reduction framework for space debris detection based on GPU technology
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی هوافضا
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In the last years, the increasing number of space debris has triggered the need of a distributed monitoring system for the prevention of possible space collisions. Space surveillance based on ground telescope allows the monitoring of the traffic of the Resident Space Objects (RSOs) in the Earth orbit. This space debris surveillance has several applications such as orbit prediction and conjunction assessment. In this paper is proposed an optimized and performance-oriented pipeline for sources extraction intended to the automatic detection of space debris in optical data. The detection method is based on the morphological operations and Hough Transform for lines. Near real-time detection is obtained using General Purpose computing on Graphics Processing Units (GPGPU). The high degree of processing parallelism provided by GPGPU allows to split data analysis over thousands of threads in order to process big datasets with a limited computational time. The implementation has been tested on a large and heterogeneous images data set, containing both imaging satellites from different orbit ranges and multiple observation modes (i.e. sidereal and object tracking). These images were taken during an observation campaign performed from the EQUO (EQUatorial Observatory) observatory settled at the Broglio Space Center (BSC) in Kenya, which is part of the ASI-Sapienza Agreement.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Astronautica - Volume 145, April 2018, Pages 332-341
Journal: Acta Astronautica - Volume 145, April 2018, Pages 332-341
نویسندگان
Francesco Diprima, Fabio Santoni, Fabrizio Piergentili, Vito Fortunato, Cristoforo Abbattista, Leonardo Amoruso,