کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8142917 | 1523921 | 2015 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The Venus-solar wind interaction: Is it purely ionospheric?
ترجمه فارسی عنوان
تعامل باد خورشید ونوس: آیا این صرفا یونسفری است؟
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
فیزیک زمین (ژئو فیزیک)
چکیده انگلیسی
The Venus solar wind interaction is often regarded as the prototypical example of an induced magnetosphere. Pioneer Venus Orbiter (PVO) observations during a period of moderate to strong solar EUV fluxes led to a fairly detailed picture in which the currents in the conducting ionosphere produce a nearly impenetrable obstacle to the incident magnetized plasma flow, resulting in a classical draped field magnetosheath region and a comet-like magnetotail. Inspired by the availability of Venus Express (VEX) observations from the north polar region, and their sometimes unexpected behavior, we reanalyzed the observed Venus wake magnetic fields in the altitude range ~150 to ~450 km to determine whether some signature of a weak planetary field could have been missed. Our results suggest the presence of a small (few nT) but persistent radial field direction bias in the deep nightside, low to mid-latitude range sampled on PVO. The bias has a hemispheric dependence, with the more positive (outward) fields in the south and the more negative (inward) fields in the north. However the VEX counterpart of these data, obtained just nightward of the north polar terminator, shows no significant bias. This observation raises several questions about our understanding of the fields at the surface of Venus. We investigate whether the PVO radial field bias could be the subtle signature of a weak global dipole with , higher by ~10à than the previously established upper limits. A weak dipole solar wind interaction model produces results in the center of the low altitude wake that compare favorably with the observed field bias seen by PVO; however, the lack of agreement with the higher latitude and VEX observations suggests other explanations need to be considered. For example, effects related to previously observed convection electric field-controlled hemispheric asymmetries provide a possible alternative, as are external fields that diffuse into and through the interior. This work points out the need for better understanding the features introduced by species-dependent plasma processes, and the role of the planet itself, in deciphering weakly magnetized planet interactions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Planetary and Space Science - Volume 119, 15 December 2015, Pages 36-42
Journal: Planetary and Space Science - Volume 119, 15 December 2015, Pages 36-42
نویسندگان
J.G. Luhmann, Y.J. Ma, M.N. Villarreal, H.Y. Wei, T.L. Zhang,