کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8894676 | 1629892 | 2018 | 31 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Chaos-based multigene genetic programming: A new hybrid strategy for river flow forecasting
ترجمه فارسی عنوان
برنامه ریزی ژنتیک چند گانه مبتنی بر هرج و مرج: یک استراتژی ترکیبی جدید برای پیش بینی جریان
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
فرآیندهای سطح زمین
چکیده انگلیسی
Chaos theory is integrated with Multi-Gene Genetic Programming (MGGP) engine as a new hybrid model for river flow forecasting. This is to be referred to as Chaos-MGGP and its performance is tested using daily historic flow time series at four gauging stations in two countries with a mix of both intermittent and perennial rivers. Three models are developed: (i) Local Prediction Model (LPM); (ii) standalone MGGP; and (iii) Chaos-MGGP, where the first two models serve as the benchmark for comparison purposes. The Phase-Space Reconstruction (PSR) parameters of delay time and embedding dimension form the dominant input signals derived from original time series using chaos theory and these are transferred to Chaos-MGGP. The paper develops a procedure to identify global optimum values of the PSR parameters for the construction of a regression-type prediction model to implement the Chaos-MGGP model. The inter-comparison of the results at the selected four gauging stations shows that the Chaos-MGGP model provides more accurate forecasts than those of stand-alone MGGP or LPM models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hydrology - Volume 562, July 2018, Pages 455-467
Journal: Journal of Hydrology - Volume 562, July 2018, Pages 455-467
نویسندگان
Mohammad Ali Ghorbani, Rahman Khatibi, Ali Danandeh Mehr, Hakimeh Asadi,