کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8895165 | 1629898 | 2018 | 41 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Comprehensive evaluation of Ensemble Multi-Satellite Precipitation Dataset using the Dynamic Bayesian Model Averaging scheme over the Tibetan plateau
ترجمه فارسی عنوان
ارزیابی جامع از مجموعه داده های ماهواره ای چندجملهای گروهی با استفاده از طرح میانگین سازگاری پویای بیزی بر روی فلات
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
فرآیندهای سطح زمین
چکیده انگلیسی
The objective of this study is to comprehensively evaluate the new Ensemble Multi-Satellite Precipitation Dataset using the Dynamic Bayesian Model Averaging scheme (EMSPD-DBMA) at daily and 0.25° scales from 2001 to 2015 over the Tibetan Plateau (TP). Error analysis against gauge observations revealed that EMSPD-DBMA captured the spatiotemporal pattern of daily precipitation with an acceptable Correlation Coefficient (CC) of 0.53 and a Relative Bias (RB) of â8.28%. Moreover, EMSPD-DBMA outperformed IMERG and GSMaP-MVK in almost all metrics in the summers of 2014 and 2015, with the lowest RB and Root Mean Square Error (RMSE) values of â2.88% and 8.01â¯mm/d, respectively. It also better reproduced the Probability Density Function (PDF) in terms of daily rainfall amount and estimated moderate and heavy rainfall better than both IMERG and GSMaP-MVK. Further, hydrological evaluation with the Coupled Routing and Excess STorage (CREST) model in the Upper Yangtze River region indicated that the EMSPD-DBMA forced simulation showed satisfying hydrological performance in terms of streamflow prediction, with Nash-Sutcliffe coefficient of Efficiency (NSE) values of 0.82 and 0.58, compared to gauge forced simulation (0.88 and 0.60) at the calibration and validation periods, respectively. EMSPD-DBMA also performed a greater fitness for peak flow simulation than a new Multi-Source Weighted-Ensemble Precipitation Version 2 (MSWEP V2) product, indicating a promising prospect of hydrological utility for the ensemble satellite precipitation data. This study belongs to early comprehensive evaluation of the blended multi-satellite precipitation data across the TP, which would be significant for improving the DBMA algorithm in regions with complex terrain.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hydrology - Volume 556, January 2018, Pages 634-644
Journal: Journal of Hydrology - Volume 556, January 2018, Pages 634-644
نویسندگان
Yingzhao Ma, Yuan Yang, Zhongying Han, Guoqiang Tang, Lane Maguire, Zhigang Chu, Yang Hong,