کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8901668 1631946 2019 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Recovering the historical distribution for nonlinear space-fractional diffusion equation with temporally dependent thermal conductivity in higher dimensional space
ترجمه فارسی عنوان
بازیابی توزیع تاریخی برای معادله نفوذ غیر کاهشی فضای کسر با هدایت حرارت زمانی وابسته در فضای بالاتر
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
چکیده انگلیسی
In this paper, we investigate the problem of recovering the historical distribution for a nonlinear space-fractional diffusion equation with temporally dependent thermal conductivity in higher dimensional space. This problem is obtained from the classical diffusion equation by replacing the second-order space derivative with a fractional Laplacian of order α∈(1∕2,1], which is usually used to model the anomalous diffusion. The problem is severely ill-posed. To regularize the problem, we propose a modified version of the Tikhonov regularization method. A stability estimate of Hölder type is established. Finally, several numerical examples based on the finite difference approximation and the discrete Fourier transform are presented to illustrate the theoretical results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 345, 1 January 2019, Pages 114-126
نویسندگان
, ,