| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 8901741 | 1631947 | 2018 | 17 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Reliability estimation of multicomponent stress-strength model based on copula function under progressively hybrid censoring
												
											ترجمه فارسی عنوان
													برآورد قابلیت اطمینان از مدل استرس چندمتغیره چند منظوره بر اساس عملکرد کوپولاسیون تحت سانسور به طور مداوم هیبرید
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													ریاضیات کاربردی
												
											چکیده انگلیسی
												In reliability analysis of the stress-strength models, the stress and strength variables are typically assumed as independent. However, such an assumption may be unrealistic in some applications. It is a meaningful issue to estimate the reliability of the stress-strength model for dependent stress and strength variables. In this paper, we estimate the reliability of multicomponent stress-strength model by assuming the dependent Weibull stress variables and exponential strength variables based on Gumbel copula under Type-I progressively hybrid censoring scheme. The estimators of the unknown parameters and reliability are obtained by using the maximum likelihood estimation method. Also, the asymptotic confidence intervals and Bootstrap percentile confidence intervals of the unknown parameters and reliability of stress-strength model are derived. Monte Carlo simulations are used to evaluate the performance of the maximum likelihood estimators, asymptotic confidence intervals and Bootstrap percentile confidence intervals. Finally, real data are analyzed to demonstrate the practicability of the stress-strength model in this article.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 344, 15 December 2018, Pages 100-114
											Journal: Journal of Computational and Applied Mathematics - Volume 344, 15 December 2018, Pages 100-114
نویسندگان
												Xuchao Bai, Yimin Shi, Yiming Liu, Bin Liu, 
											