کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8901838 | 1631948 | 2018 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Classical and Bayesian inferential approaches using Lomax model under progressively type-I hybrid censoring
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this article, we consider the problem of estimation and prediction on unknown parameters of a Lomax distribution when the lifetime data are observed in the presence of progressively type-I hybrid censoring scheme. In the classical scenario, the Expectation-Maximization (EM) algorithm is utilized to derive the maximum likelihood estimates (MLEs) for the unknown parameters and associated confidence intervals. Under the Bayesian framework, the point estimates of unknown parameters with respect to different symmetric, asymmetric and balanced loss functions are obtained using Tierney-Kadane's approximation and Markov Chain Monte Carlo (MCMC) technique. Also, the highest posterior density (HPD) credible intervals for the parameters are reckoned using importance sampling procedure. Simulation experiments are performed to compare the different proposed methods. Further, the predictive estimates of censored observations and the corresponding prediction intervals are also provided. One real-life data example is presented to illustrate the derived results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 343, 1 December 2018, Pages 397-412
Journal: Journal of Computational and Applied Mathematics - Volume 343, 1 December 2018, Pages 397-412
نویسندگان
Mehri Noori Asl, Reza Arabi Belaghi, Hossien Bevrani,