کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8901838 1631948 2018 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Classical and Bayesian inferential approaches using Lomax model under progressively type-I hybrid censoring
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Classical and Bayesian inferential approaches using Lomax model under progressively type-I hybrid censoring
چکیده انگلیسی
In this article, we consider the problem of estimation and prediction on unknown parameters of a Lomax distribution when the lifetime data are observed in the presence of progressively type-I hybrid censoring scheme. In the classical scenario, the Expectation-Maximization (EM) algorithm is utilized to derive the maximum likelihood estimates (MLEs) for the unknown parameters and associated confidence intervals. Under the Bayesian framework, the point estimates of unknown parameters with respect to different symmetric, asymmetric and balanced loss functions are obtained using Tierney-Kadane's approximation and Markov Chain Monte Carlo (MCMC) technique. Also, the highest posterior density (HPD) credible intervals for the parameters are reckoned using importance sampling procedure. Simulation experiments are performed to compare the different proposed methods. Further, the predictive estimates of censored observations and the corresponding prediction intervals are also provided. One real-life data example is presented to illustrate the derived results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 343, 1 December 2018, Pages 397-412
نویسندگان
, , ,