کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8901904 | 1631949 | 2018 | 31 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Optimal excess-of-loss reinsurance and investment problem with delay and jump-diffusion risk process under the CEV model
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we investigate an optimal investment and excess-of-loss reinsurance problem with delay and jump-diffusion risk process for an insurer. Specifically, the insurer is allowed to purchase excess-of-loss reinsurance and invest in a financial market, where the surplus of insurer is represented by a jump-diffusion model and the financial market consists of one risk-free asset and one risky asset whose price process is governed by a constant elasticity of variance model. In addition, the performance-related capital inflow/outflow is introduced, the wealth process of insurer is modeled by a stochastic differential delay equation. The insurer aims to seek the optimal excess-of-loss reinsurance and investment strategy to maximize the expected exponential utility of the combination of terminal wealth and average performance wealth. By solving a Hamilton-Jacobi-Bellman equation, the closed-form expressions for the optimal strategy and the optimal value function are derived. Finally, some special cases of our model and results are presented, and some numerical examples for our results are provided.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 342, November 2018, Pages 317-336
Journal: Journal of Computational and Applied Mathematics - Volume 342, November 2018, Pages 317-336
نویسندگان
Chunxiang A, Yongzeng Lai, Yi Shao,