کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8902162 1631958 2018 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Superconvergence of a class of expanded discontinuous Galerkin methods for fully nonlinear elliptic problems in divergence form
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Superconvergence of a class of expanded discontinuous Galerkin methods for fully nonlinear elliptic problems in divergence form
چکیده انگلیسی
For fully nonlinear elliptic boundary value problems in divergence form, improved error estimates are derived in the frame work of a class of expanded discontinuous Galerkin methods. It is shown that the error estimate for the discrete flux in L2-norm is of order k+1, when piecewise polynomials of degree k≥1 are used to approximate both potential as well as flux variables. Then, solving a discrete linear elliptic problem in each element locally, a suitable post-processing of the discrete potential is proposed and it is proved that the resulting post-processed potential converges with order of convergence k+2 in L2-norm. By choosing stabilizing parameters appropriately, similar results are derived for the expanded HDG methods for nonlinear elliptic problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 333, 1 May 2018, Pages 215-234
نویسندگان
, ,