کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8902196 1631960 2018 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Low Tucker rank tensor recovery via ADMM based on exact and inexact iteratively reweighted algorithms
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Low Tucker rank tensor recovery via ADMM based on exact and inexact iteratively reweighted algorithms
چکیده انگلیسی
In this paper, we establish a non-convex Lp norm relaxation model for low Tucker rank tensor recovery problem, and equivalently transform it to a non-convex minimization problem with separable structure by introducing series of auxiliary variables. In particular, we propose two alternating direction method of multipliers (ADMM) based on exact and inexact iteratively reweighted algorithms to solve the obtained non-convex relaxation problem respectively, which are proved to be convergent. We implement the proposed algorithms in numerical experiments for solving low Tucker rank tensor recovery problem on simulation data and real data, and compare them with other existing state-of-art algorithms. Numerical results show the effectiveness of the proposed algorithms for solving low rank tensor recovery problem and image recovery.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 331, 15 March 2018, Pages 64-81
نویسندگان
, , ,