کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8909161 1637133 2018 61 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Pore characterization and shale facies analysis of the Ordovician-Silurian transition of northern Guizhou, South China: The controls of shale facies on pore distribution
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات زمین شناسی اقتصادی
پیش نمایش صفحه اول مقاله
Pore characterization and shale facies analysis of the Ordovician-Silurian transition of northern Guizhou, South China: The controls of shale facies on pore distribution
چکیده انگلیسی
The Ordovician-Silurian Wufeng-Longmaxi Formations in the Upper Yangtze Platform have been considered as the most promising shale play in China. However, few studies of detailed shale facies and their influence on pore distribution have been conducted. Therefore, it is important to describe the heterogeneity of shale facies in detail and elucidate their relationship to pore networks and development. Seven distinct facies were identified on the basis of their characteristic physical, biological, and chemical attributes. Ion-milled samples from all facies were examined with SEM for identification of pore types. Point-counting was used to quantify porosity. Four major pore types appear dominant: framework pores, phyllosilicate framework (PF) pores, intrapores within inorganic grains, and organic matter (OM) pores. Due to variability in composition and depositional setting of the different facies, pore networks are not uniform. Framework pores between detrital grains and PF pores are widespread in bioturbated claystones, Pores in black siliceous shales are dominated by framework pores supported by authigenic silica. Most of these are filled with kerogen/bitumen that is host to “foam” and “bubble” type OM pores. Intrapores within calcite or dolomite grains are common in fossiliferous mudstones and black dolomitic siltstones, but are isolated and do not contribute to productive porosity. In muddy siltstones, PF pores are well developed within silty bands. Initial framework pores within silty beds or laminae, however, were subsequently cemented by calcite or destroyed by compaction. As most of primary PF pores and primary frameworks pores are lost during compaction, porosity is highly dependent on the population of framework pores between authigenic quartz grains. Secondary cracking of amorphous organic matter added porosity after initial infilling of porosity by oil and bitumen migration. Therefore, porosity is mainly controlled by abundance of authigenic silica and TOC, in spite of differences of burial diagenesis among various facies. Understanding these main controls on porosity should be helpful to predict and find and more porous facies and have a significant impact on future gas exploration in the Wufeng-Longmaxi Formations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Marine and Petroleum Geology - Volume 92, April 2018, Pages 697-718
نویسندگان
, , , ,