کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
914537 | 918404 | 2010 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Spinal antinociceptive effects of cyclooxygenase inhibition during inflammation: Involvement of prostaglandins and endocannabinoids
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب سلولی و مولکولی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Both cyclooxygenase-1 and -2 are expressed in the spinal cord, and the spinal COX product prostaglandin E2 (PGE2) contributes to the generation of central sensitization upon peripheral inflammation. Vice versa spinal COX inhibition is considered an important mechanism of antihyperalgesic pain treatment. Recently, however, COX-2 was shown to be also involved in the metabolism of endocannabinoids. Because endocannabinoids can have analgesic actions it is conceivable that inhibition of spinal COX produces analgesia not only by inhibition of PG synthesis but also by inhibition of endocannabinoid breakdown. In the present study, we recorded from spinal cord neurons with input from the inflamed knee joint and we measured the spinal release of PGE2 and the endocannabinoid 2-arachidonoyl glycerol (2-AG) in vivo, using the same stimulation procedures. COX inhibitors were applied spinally. Selective COX-1, selective COX-2 and non-selective COX inhibitors attenuated the generation of spinal hyperexcitability when applied before and during development of inflammation but, when inflammation and spinal hyperexcitability were established, only selective COX-2 inhibitors reversed spinal hyperexcitability. During established inflammation all COX inhibitors reduced release of spinal PGE2 almost equally but only the COX-2 inhibitor prevented breakdown of 2-AG. The reversal of spinal hyperexcitability by COX-2 inhibitors was prevented or partially reversed by AM-251, an antagonist at the cannabinoid-1 receptor. We conclude that inhibition of spinal COX-2 not only reduces PG production but also endocannabinoid breakdown and provide evidence that reversal of inflammation-evoked spinal hyperexcitability by COX-2 inhibitors is more related to endocannabinoidergic mechanisms than to inhibition of spinal PG synthesis.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: PAIN - Volume 148, Issue 1, January 2010, Pages 26-35
Journal: PAIN - Volume 148, Issue 1, January 2010, Pages 26-35
نویسندگان
Alejandro Telleria-Diaz, Martin Schmidt, Stefan Kreusch, Anne-Kathrin Neubert, Florian Schache, Enrique Vazquez, Horacio Vanegas, Hans-Georg Schaible, Andrea Ebersberger,