کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9469204 | 1317910 | 2005 | 32 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Merging genomic control networks and soil-plant-atmosphere-continuum models
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
ABAOOPmRNASVATSPACDNA - DNA یا اسید دزوکسی ریبونوکلئیکdeoxyribonucleic acid - اسید deoxyribonucleicabscisic acid - اسید آبسزیکObject-oriented programming - برنامه نویسی شی گراmessenger ribonucleic acid - رسوب ریبونوکلئیک اسیدDevelopment - رشدlong day - روز طولانیShort day - روز کوتاهL-systems - سیستم های LSimulation - شبیه سازیPhysiology - فیزیولوژیGenetics - ژنتیک
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Advances in genomic science make it desirable to include genomic controls in soil-plant-atmosphere-continuum (SPAC) models by methods proposed in this paper. Molecular genetic concepts suggest that a differential equation similar to ones used in neural networks can be used to model single-gene elements of larger systems. Natural modifications to the equation incorporate temperature dependency. Multi-gene components based on this element function as Boolean logic gates, linear arithmetic units, delays, differentiators, integrators, oscillators, coincidence detectors, and bi-stable devices. Related genetic circuitry from real organisms is shown. Genomic integration with SPAC models entails whole-plant modeling with realistic morphology. Plants are networks of parts, iterated in time and space under genetic control, that induce and modulate conservative SPAC mass/energy flows. Network developmental rules can be stated as Lindenmayer grammars whose symbols represent plant parts programmed as software objects. A structure is presented for simulators based on these concepts. The discussion argues that prior object-oriented plant modeling approaches (i) do not reflect how plants actually develop morphologically and (ii) may represent processes in tactically unwise ways at a time when genomics is advancing knowledge of process interactions. Finally, genomics and expanding computing power redefine concepts of model “simplicity” and “complexity” to favor increased realism.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Agricultural Systems - Volume 86, Issue 3, December 2005, Pages 243-274
Journal: Agricultural Systems - Volume 86, Issue 3, December 2005, Pages 243-274
نویسندگان
S.M. Welch, J.L. Roe, S. Das, Z. Dong, R. He, M.B. Kirkham,