کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9485597 1329267 2005 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Root physiological factors involved in cool-season grass response to high soil temperature
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک بوم شناسی، تکامل، رفتار و سامانه شناسی
پیش نمایش صفحه اول مقاله
Root physiological factors involved in cool-season grass response to high soil temperature
چکیده انگلیسی
High soil temperature is a critical factor limiting growth of cool-season grasses. This study was designed to examine changes in water, nutritional, and hormonal status in response to high soil temperature for creeping bentgrass (Agrostis stoloniferavar. palustris) and to compare the sensitivity of those parameters to high soil temperatures. Plants of 'Penncross' were exposed to 35 °C soil temperature (heat stress) or 20 °C (control) in water baths while air temperature was maintained at 20 °C in growth chambers. Turfgrass quality, shoot growth rate, and root biomass decreased below the control levels at 15, 15, and 10 days of heat stress, respectively, while root mortality increased above the control level at 5 days of heat stress. Relative water content (RWC) of leaves decreased below the control level at 15 days of heat treatment. Root N content increased while P and K content did not change over time at 35 °C. Shoot N, P, and K content decreased below the control level at 15, 15, and 10 days of heat stress, respectively. Root abscisic acid (ABA) content decreased below the control level at 10 days while shoot ABA content increased above the control level at 5 days. The content of cytokinins (zeatin (Z) and zeatin riboside (ZR), dihydrogen zeatin riboside (DHZR), and isopentenyl adenosine (iPA)) decreased below their respective control levels as early as 5 days of heat stress for roots and 10 days for shoots. The decline in cytokinin content was also more dramatic than changes in other parameters. Our results suggested that cytokinin was most sensitive to high soil temperature among parameters examined, suggesting that changes in cytokinins could serve as an early stress indicator for plant responses to high soil temperature; however, decreased water, nutrient (N, P, and K), and cytokinin content, and increased ABA could all contribute to the decline in shoot and root growth for creeping bentgrass exposed to high soil temperatures.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental and Experimental Botany - Volume 53, Issue 3, June 2005, Pages 233-245
نویسندگان
, ,