کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9509396 1341391 2005 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fisher information of orthogonal hypergeometric polynomials
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Fisher information of orthogonal hypergeometric polynomials
چکیده انگلیسی
The probability densities of position and momentum of many quantum systems have the form ρ(x)∝pn2(x)ω(x), where {pn(x)} denotes a sequence of hypergeometric-type polynomials orthogonal with respect to the weight function ω(x). Here we derive the explicit expression of the Fisher information I=∫dx[ρ′(x)]2/ρ(x) corresponding to this kind of distributions, in terms of the coefficients of the second-order differential equation satisfied by the polynomials pn(x). We work out in detail the particular cases of the classical Hermite, Laguerre and Jacobi polynomials, for which we find the value of Fisher information in closed analytical form and study its asymptotic behaviour in the large n limit.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 182, Issue 1, 1 October 2005, Pages 150-164
نویسندگان
, ,