کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9509575 | 1341404 | 2005 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Local bifurcations in delayed chaos anticontrol systems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we analyze the local bifurcation phenomena in a simple system described by equation xË(t)=-ax(t)+bsin(x(t-Ï)), which is an one-dimensional linear system with nonlinear delayed feedback. Such systems have been proven to exhibit chaotic behavior, and thus can be viewed as the so-called chaos anticontrol systems. In this paper, the nonlinearity is chosen as the trigonometric function sin(·), different from the existing ones. By local analysis we prove that with increasing parameters, the number of equilibria increases and Hopf bifurcation occurs near some equilibria. This complex bifurcation phenomenon can help to understand the complex behavior of such models. To illustrate the theoretical results, bifurcation diagrams are numerically calculated and Hopf bifurcation and chaotic behavior are identified.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 181, Issue 1, 1 September 2005, Pages 188-199
Journal: Journal of Computational and Applied Mathematics - Volume 181, Issue 1, 1 September 2005, Pages 188-199
نویسندگان
Hongtao Lu, Xinzhen Yu,