کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9509840 | 1341416 | 2005 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On non-standard finite difference models of reaction-diffusion equations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Reaction-diffusion equations arise in many fields of science and engineering. Often, their solutions enjoy a number of physical properties. We design, in a systematic way, new non-standard finite difference schemes, which replicate three of these properties. The first property is the stability/instability of the fixed points of the associated space independent equation. This property is preserved by non-standard one- and two-stage theta methods, presented in the general setting of stiff or non-stiff systems of differential equations. Schemes, which preserve the principle of conservation of energy for the corresponding stationary equation (second property) are constructed by non-local approximation of nonlinear reactions. Assembling of theta-methods in the time variable with energy-preserving schemes in the space variable yields non-standard schemes which, under suitable functional relation between step sizes, display the boundedness and positivity of the solution (third property). A spectral method in the space variable coupled with a suitable non-standard scheme in the time variable is also presented. Numerical experiments are provided.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 175, Issue 1, 1 March 2005, Pages 11-29
Journal: Journal of Computational and Applied Mathematics - Volume 175, Issue 1, 1 March 2005, Pages 11-29
نویسندگان
R. Anguelov, P. Kama, J.M.-S. Lubuma,