کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9526965 | 1636978 | 2005 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Cooling history of the Upper Cretaceous Palgongsan Granite, Gyeongsang Basin, SE Korea and its tectonic implication for uplift on the active continental margin
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Apatite and zircon fission track analyses were carried out to reconstruct the cooling and inferred uplift history of the Cretaceous Palgongsan Granite, Gyeongsang Basin, Korea. The Palgongsan Granite is one of the Bulguksa intrusive rocks that formed by arc-related plutonism during Late Cretaceous to Early Tertiary time. Fission track dating of the Palgongsan Granite yielded nearly concordant ages of 53 and 65 Ma for apatite and zircon, respectively. The Palgongsan Granite also shows a simple cooling pattern, which suggests that it has not been affected by any thermal event after emplacement. The cooling history derived from fission track data combined with other thermochronometric data indicates that the Palgongsan Granite experienced relatively rapid cooling in earlier stage (> 30 °C/Ma). The initial rapid cooling rate during the Late Cretaceous has been caused by the large thermal contrast between the granite body and the country rocks. After reaching thermal equilibrium with the surrounding country rocks, the cooling rate of the Palgongsan Granite was abruptly decreased in late stage. In this late stage, the decelerated cooling rate is interpreted to have been controlled by uplift and erosion processes, and the average exhumation rate is calculated to be ca. 50 m/my over the temperature range from 100 °C to the surface temperature. The cooling history of the Palgongsan Granite is in good agreement with that of the Ryoke Granitic Belt in Southwest Japan, as well as those of the Taebaeksan Range and other Bulguksa intrusive rocks in the Gyeongsang Basin. This suggests that such cooling was probably caused by regional uplift and exhumation processes on the East Asian active continental margin. Compared with the uplift rates of the Andes, the uplift rates on the eastern Pacific margin appear to be higher than those on the western Pacific margin.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Tectonophysics - Volume 403, Issues 1â4, 5 July 2005, Pages 151-165
Journal: Tectonophysics - Volume 403, Issues 1â4, 5 July 2005, Pages 151-165
نویسندگان
Hyoun Soo Lim, Yong Il Lee,