کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9600473 | 1404690 | 2005 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Prediction and Classification of Human G-protein Coupled Receptors Based on Support Vector Machines
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم زیستی و بیوفناوری
بیوشیمی، ژنتیک و زیست شناسی مولکولی
ژنتیک
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A computational system for the prediction and classification of human G-protein coupled receptors (GPCRs) has been developed based on the support vector machine (SVM) method and protein sequence information. The feature vectors used to develop the SVM prediction models consist of statistically significant features selected from single amino acid, dipeptide, and tripeptide compositions of protein sequences. Furthermore, the length distribution difference between GPCRs and non-GPCRs has also been exploited to improve the prediction performance. The testing results with annotated human protein sequences demonstrate that this system can get good performance for both prediction and classification of human GPCRs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Genomics, Proteomics & Bioinformatics - Volume 3, Issue 4, 2005, Pages 242-246
Journal: Genomics, Proteomics & Bioinformatics - Volume 3, Issue 4, 2005, Pages 242-246
نویسندگان
Yun-Fei Wang, Huan Chen, Yan-Hong Zhou,