کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9743539 | 1491193 | 2005 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Fast model selection for robust calibration methods
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
One of the main issues in principal component regression (PCR) and partial least squares regression (PLSR) is the selection of the number of principal components. To this end, the curve with the root mean squared error of cross-validated prediction (RMSECV) is often described in the literature as a very helpful graphical tool. In this paper, we focus on model selection for robust calibration methods. We first propose a robust RMSECV value and then use it to define a new criterion for the selecting of the optimal number of components. This robust component selection (RCS) statistic combines the goodness-of-fit and the predictive power of the model. As the algorithms to compute these robust PCR and PLSR estimators are more complex and slower than the classical approaches, cross-validation becomes very time consuming. Hence, we propose fast algorithms to compute the robust RMSECV values. We evaluate the developed procedures at several data sets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Analytica Chimica Acta - Volume 544, Issues 1â2, 15 July 2005, Pages 219-228
Journal: Analytica Chimica Acta - Volume 544, Issues 1â2, 15 July 2005, Pages 219-228
نویسندگان
S. Engelen, M. Hubert,