کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10119611 | 1634259 | 2005 | 28 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Instabilities in hurricane-like boundary layers
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
علم هواشناسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The evolution and stability of the swirling boundary layer underneath a hurricane-like vortex is studied using both a nonlinear model and linearized stability analysis. The nonlinear model is an axisymmetric model of incompressible fluid flow, which is used to simulate the development of boundary layers underneath vortices with hurricane-like wind profiles. Axisymmetric rolls appear in these boundary layers, which have some similarities to the observed rolls in hurricanes. The axisymmetric flow is also used as the basic-state for a linearized stability analysis. The analysis technique allows for arbitrary variation in the radial and vertical directions for both the basic-state flow and the perturbations. Thus, the strong radial variations and curvature effects common to strong vortices are part of the analysis. The analysis finds both symmetric and asymmetric instabilities that are similar to those in the nonlinear simulations and in observations. The instabilities acquire some of their energy from the vertical shear associated with a reversal of the radial inflow at the top of the boundary layer, and some of their energy from vertical shear of the azimuthal flow. The radial flow energy conversion tends to increase for flows with less inertial stability and for modes oriented across the low-level shear; the azimuthal flow conversion increases for larger inertial stability and for modes aligned with the low-level shear.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Dynamics of Atmospheres and Oceans - Volume 40, Issue 3, July 2005, Pages 209-236
Journal: Dynamics of Atmospheres and Oceans - Volume 40, Issue 3, July 2005, Pages 209-236
نویسندگان
David S. Nolan,