کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10278637 | 464572 | 2005 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Artificial neural networks: a promising tool to design and optimize high-pressure food processes
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this work, an artificial neural network (ANN) is used to predict two parameters of interest for high-pressure food processing: the maximum or minimum temperature reached in the sample after pressurization and the time needed for thermal re-equilibration in the high-pressure system. Both variables together represent in a reliable form the temperature evolution during the high-pressure process. The ANN was trained with a data file composed of: applied pressure, pressure increase rate, set point temperature, high-pressure vessel temperature and ambient temperature altogether with the parameters to predict. After a proper training, the ANN was able to make predictions accurately and therefore, it becomes a useful tool to design and optimize high-pressure processes in the food industry where the pressure/temperature evolution is an essential factor to control the microbiological and/or enzymatic activity of the products.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Food Engineering - Volume 69, Issue 3, August 2005, Pages 299-306
Journal: Journal of Food Engineering - Volume 69, Issue 3, August 2005, Pages 299-306
نویسندگان
J.S. Torrecilla, L. Otero, P.D. Sanz,