کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10294985 | 512888 | 2005 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Evaluation of lateral spreading using artificial neural networks
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
مهندسی ژئوتکنیک و زمین شناسی مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Liquefaction-induced lateral spreading has been a very damaging type of ground failure during past strong earthquakes. Although the occurrence of liquefaction and lateral spreading at a given site can be predicted, the methods to estimate the magnitude of resulting deformations is still the focus of many researches. In this study, using professional software called STATISTICA, a neural network model is developed to predict the horizontal ground displacement in both ground slope and free face conditions due to liquefaction-induced lateral spreading. The database, implemented in this work, is the one compiled by Youd and his colleagues in their revised MLR model. The influence of seismological, topographical and geotechnical parameters on resulting deformations and their degrees of importance are investigated. The results indicate that the model presented in this research serves as a reliable tool to predict horizontal ground displacement. The correlation factors and the root mean square errors obtained in this model show the superiority of the Neural Network approach over the traditional regression analysis.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Soil Dynamics and Earthquake Engineering - Volume 25, Issue 1, January 2005, Pages 1-9
Journal: Soil Dynamics and Earthquake Engineering - Volume 25, Issue 1, January 2005, Pages 1-9
نویسندگان
M.H. Baziar, A. Ghorbani,