کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10505663 | 947126 | 2005 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Policy planning under uncertainty: efficient starting populations for simulation-optimization methods applied to municipal solid waste management
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Evolutionary simulation-optimization (ESO) techniques can be adapted to model a wide variety of problem types in which system components are stochastic. Grey programming (GP) methods have been previously applied to numerous environmental planning problems containing uncertain information. In this paper, ESO is combined with GP for policy planning to create a hybrid solution approach named GESO. It can be shown that multiple policy alternatives meeting required system criteria, or modelling-to-generate-alternatives (MGA), can be quickly and efficiently created by applying GESO to this case data. The efficacy of GESO is illustrated using a municipal solid waste management case taken from the regional municipality of Hamilton-Wentworth in the Province of Ontario, Canada. The MGA capability of GESO is especially meaningful for large-scale real-world planning problems and the practicality of this procedure can easily be extended from MSW systems to many other planning applications containing significant sources of uncertainty.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Environmental Management - Volume 77, Issue 1, October 2005, Pages 22-34
Journal: Journal of Environmental Management - Volume 77, Issue 1, October 2005, Pages 22-34
نویسندگان
Gordon H. Huang, Jonathan D. Linton, Julian Scott Yeomans, Reena Yoogalingam,