کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10505663 947126 2005 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Policy planning under uncertainty: efficient starting populations for simulation-optimization methods applied to municipal solid waste management
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله
Policy planning under uncertainty: efficient starting populations for simulation-optimization methods applied to municipal solid waste management
چکیده انگلیسی
Evolutionary simulation-optimization (ESO) techniques can be adapted to model a wide variety of problem types in which system components are stochastic. Grey programming (GP) methods have been previously applied to numerous environmental planning problems containing uncertain information. In this paper, ESO is combined with GP for policy planning to create a hybrid solution approach named GESO. It can be shown that multiple policy alternatives meeting required system criteria, or modelling-to-generate-alternatives (MGA), can be quickly and efficiently created by applying GESO to this case data. The efficacy of GESO is illustrated using a municipal solid waste management case taken from the regional municipality of Hamilton-Wentworth in the Province of Ontario, Canada. The MGA capability of GESO is especially meaningful for large-scale real-world planning problems and the practicality of this procedure can easily be extended from MSW systems to many other planning applications containing significant sources of uncertainty.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Environmental Management - Volume 77, Issue 1, October 2005, Pages 22-34
نویسندگان
, , , ,