کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10677581 | 1012360 | 2016 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Spectral solution of the breakage-coalescence population balance equation Picard and Newton iteration methods
ترجمه فارسی عنوان
راه حل طیفی از معادله تعادل توزیع درآوردن شکست پیکارد و نیوتون تکرار روش
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
هماهنگی ارتوگنال، کمترین مربعات، گالرکین، معادله تعادل جمعیت، پیکارد، روش نیوتن،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
چکیده انگلیسی
The behavior of dispersed systems such as gas-liquids or liquid-liquid systems depends on the characteristics of the dispersed phase. The population balance (PB) equation is encountered in numerous engineering disciplines in order to describe complex processes where the accurate prediction of the dispersed phase plays a major role for the overall behavior of the system. In the present study, the orthogonal collocation, Galerkin and least-squares methods have been adopted to solve a non-linear PB equation which consists of both breakage and coalescence terms. The performance of the methods is demonstrated by comparing the numerical solution results with the (manufactured) analytical solution of the problem. For the least-squares method, the choice of linearization technique influences the numerical performance, whereas the Galerkin and orthogonal collocation methods obtain the same numerical accuracy for both the Picard and Newton iteration techniques. The least-squares method suffers from lack of convergency using the Picard method. On the other hand, if the Newton method is employed, the least-squares method obtains the same accuracy as the Galerkin and orthogonal collocation methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematical Modelling - Volume 40, Issue 3, 1 February 2016, Pages 1741-1753
Journal: Applied Mathematical Modelling - Volume 40, Issue 3, 1 February 2016, Pages 1741-1753
نویسندگان
Jannike Solsvik, Hugo A. Jakobsen,