کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1210612 | 965379 | 2009 | 6 صفحه PDF | دانلود رایگان |

Silica microspheres have been synthesized by phase separation and sol–gel transition coupled with emulsion method. The as-obtained material is characterized by scanning electron microscopy, nitrogen sorption, elemental analysis and particle size distribution measurements. The results demonstrated that the material featured with hierarchically porous structure, possessing both mesopores and penetrable macropores. The mesopores provide large surface area while the macropores traverse the silica particles, which may facilitate fast mass transfer as well as guarantee low backpressure when such materials are used for packed high-performance liquid chromatography (HPLC) column. Therefore, their preliminary applications as HPLC packings in fast separation and low-pressure separation have been attempted in the present study. Benzene, benzaldehyde and benzyl alcohol were separated within two minutes on the silica column at a flow rate of 7 mL min−1. Vitamin E mixtures can also be baseline separated at a high flow rate of 8 mL min−1. In addition, thirteen aromatic hydrocarbons were well separated on the octadecyl-bonded silica (ODS) column. In comparison with a commercial Kromasil ODS column, the pressure of the proposed column is much lower (<1/2) under the same chromatographic conditions, while comparable separation efficiency can be achieved.
Journal: Journal of Chromatography A - Volume 1216, Issue 44, 30 October 2009, Pages 7388–7393