کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1666728 1518084 2012 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Room temperature photoluminescence spectrum modeling of hydrogenated amorphous silicon carbide thin films by a joint density of tail states approach and its application to plasma deposited hydrogenated amorphous silicon carbide thin films
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد فناوری نانو (نانو تکنولوژی)
پیش نمایش صفحه اول مقاله
Room temperature photoluminescence spectrum modeling of hydrogenated amorphous silicon carbide thin films by a joint density of tail states approach and its application to plasma deposited hydrogenated amorphous silicon carbide thin films
چکیده انگلیسی

Room temperature photoluminescence (PL) spectrum of hydrogenated amorphous silicon carbide (a-SiCx:H) thin films was modeled by a joint density of tail states approach. In the frame of these analyses, the density of tail states was defined in terms of empirical Gaussian functions for conduction and valance bands. The PL spectrum was represented in terms of an integral of joint density of states functions and Fermi distribution function. The analyses were performed for various values of energy band gap, Fermi energy and disorder parameter, which is a parameter that represents the width of the energy band tails. Finally, the model was applied to the measured room temperature PL spectra of a-SiCx:H thin films deposited by plasma enhanced chemical vapor deposition system, with various carbon contents, which were determined by X-ray photoelectron spectroscopy measurements. The energy band gap and disorder parameters of the conduction and valance band tails were determined and compared with the optical energies and Urbach energies, obtained by UV–Visible transmittance measurements. As a result of the analyses, it was observed that the proposed model sufficiently represents the room temperature PL spectra of a-SiCx:H thin films.


► Photoluminescence spectra (PL) of the films were modeled.
► In the model, joint density of tail states and Fermi distribution function are used.
► Various values of energy band gap, Fermi energy and disorder parameter are applied.
► The model was applied to the measured PL of the films.
► The proposed model represented the room temperature PL spectrum of the films.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Thin Solid Films - Volume 520, Issue 24, 1 October 2012, Pages 7062–7065
نویسندگان
, ,