کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1667799 | 1008857 | 2011 | 5 صفحه PDF | دانلود رایگان |

An approach to the preparation of a tip-type of field emitter that is made up of carbon nanotubes (CNTs) coated with amorphous carbon nitride (a-CNx) films is presented for the purpose of enhancing its electron emission property. CNTs were directly grown on nano-sized conical-type tungsten tips via the inductively coupled plasma-chemical vapor deposition system, and a-CNx films were coated on the CNTs using an radio frequency magnetron sputtering system. The morphologies and microstructures of the a-CNx-coated CNTs were analyzed via field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, high-resolution transmission electron microscopy, and x-ray photoelectron spectroscopy. The electron emission properties of the a-CNx/CNT hetero-structures were measured using a high-vacuum field emission measurement system. The best field emission properties, such as a very low turn-on voltage of 500 V and a maximum emission current of 176 μA were achieved for the CNT emitter coated with the 5 nm-thick a-CNx film. In addition, this emitter showed a highly stable behavior in long-term (up to 25 h) electron emission.
Journal: Thin Solid Films - Volume 519, Issue 22, 1 September 2011, Pages 7899–7903