کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1669179 | 1008880 | 2009 | 7 صفحه PDF | دانلود رایگان |

Growth of ZnTe nanowires using a pulse-reverse electrodeposition technique from a non-aqueous solution is reported. ZnTe nanowires were grown on to an ordered nanotubular TiO2 template in a propylene carbonate solution at 130 °C inside a controlled atmosphere glove box. The pulse-reverse electro deposition process consisted of a cathodic pulse at − 0.62 V and an anodic pulse at 0.75 V Vs Zn2+/Zn. Stoichiometry growth of crystalline ZnTe nanowires was observed in the as-deposited condition. The anodic pulse cycle of the pulse-reverse electrodeposition process presumably introduced zinc vacancies as deep level acceptors at an energy level of Ev + 0.47 eV. The resultant ZnTe nanowires showed p-type semiconductivity with a resistivity of 7.8 × 104 Ω cm and a charge carrier density of 1.67 × 1014 cm− 3. Annihilation of the defects occurred upon thermal annealing that resulted in marginal decrease in the defect density.
Journal: Thin Solid Films - Volume 517, Issue 16, 30 June 2009, Pages 4527–4533