کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1672242 1008930 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Study of SrTiO3 thin films grown by sputtering technique for tunnel barriers in quasiparticle injection contacts
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد فناوری نانو (نانو تکنولوژی)
پیش نمایش صفحه اول مقاله
Study of SrTiO3 thin films grown by sputtering technique for tunnel barriers in quasiparticle injection contacts
چکیده انگلیسی

High-quality, c-axis oriented YBa2Cu3O7 − x/SrTiO3/Au (YBCO/STO/Au) planar structures were fabricated in situ by direct current/radiofrequency inverted-cylinder magnetron sputtering on (001) STO oriented substrates. The sandwich-type structures were patterned to transistor dimensions by standard ultraviolet-photolithography and Ar etching. The current transport mechanism in the very thin STO barriers (2–30 nm) was examined by measuring the tunneling G as function of temperature (T), and bias voltage (V). It was found that resonant tunneling and hopping via a small number of localized states (LS) are responsible for electronic conduction in the insulating material. Elastic tunneling was observed for the case of a nominal 2 nm thick STO-barrier with an energy gap Δ ≈ 20 meV in the (001) direction of YBCO. On the other hand, inelastic hopping transport via n-LS dominated for STO barrier thickness d > 2 nm. G of the lowest-order hopping channel (hopping via two LS) exhibits the characteristic T and V dependences: G2hop(T) ∝ T4/3, G2hop(V) ∝ V4/3, respectively. Increasing the thickness of the STO barriers, hopping channels of higher order contribute more and more to the current transport as proven by measuring the T and V dependences. A crossover to variable range hopping behavior has been observed for junctions with thicker barriers (d ≥ 20 nm) in the high-V or high-T regime. By fitting the experimental data to theoretical models, physical parameters of the LS could be determined. For instance, the value of the localization length or radius of the localized state was determined to be ~ 4.6 × 10− 8 cm which corresponds to the lattice constant of the STO unit cell. A value of ~ 6 × 1019 (eV)− 1 cm− 3 was calculated for the density of LS and the average barrier height was estimated as ~ 0.4 eV.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Thin Solid Films - Volume 517, Issue 6, 30 January 2009, Pages 1908–1916
نویسندگان
, , ,