کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1674050 | 1008957 | 2008 | 5 صفحه PDF | دانلود رایگان |

We studied energy transfer between rhodamine B molecules centered in each corn-shaped dendrons that forms self-assembled monolayer (SAM) film on an Au substrate. A SAM film using dendron moiety as a spacer can change the distance between rhodamines depending on the size, so that the energy transfer from an initially photo-excited rhodamine to its surrounding molecules can be controlled. The absorption spectrum of a SAM film for each generation of dendron was measured to ascertain a linear correlation between the generation and the distance. Picosecond time-resolved fluorescence spectra showed clear differences in the fluorescence decay dynamics between third-generation (G3) and fourth-generation (G4) dendron SAM films. In addition, we found that “dry” or “wet” dendron SAM considerably influenced fluorescence behavior. As a result, the use of “wet” G4 SAM is suitable in preserving photo-excitation energy. This is because it gave almost equal dynamics to G4 dendron in the dilute solution and prevented deactivation by energy dissipation.
Journal: Thin Solid Films - Volume 516, Issue 9, 3 March 2008, Pages 2371–2375