کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
185329 459596 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Reconstructed PtFe Alloy Nanoparticles with Bulk-Surface Differential Structure for Methanol Oxidation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Reconstructed PtFe Alloy Nanoparticles with Bulk-Surface Differential Structure for Methanol Oxidation
چکیده انگلیسی

The high cost of the catalyst material is a large obstacle for the commercialization of Direct Methanol Fuel Cells. In present work, the non-noble metal Fe was added to the conventional Pt/C catalyst in order to lowering the catalyst cost without sacrificing the catalytic performance. A chemically dealloying procedure was adopted to leach out the surface iron atoms and thereby increasing the stability of the catalyst. Through these procedures, the PtFe bulk-surface differential nano-catalyst was obtained. The shift in diffraction angles according to XRD spectra confirms the formation of the alloy structure between Pt and Fe. TEM results indicate that the chemically dealloyed PtFe/C nanoparticles are uniformly-dispersed with optimized average size. The PtFe bulk-surface differential structure is inferred from XPS as no surface Fe atoms are detected in spite of the change in Pt electronic structure. The existence of Fe atoms inside the nanoparticles is further confirmed by the ICP characterization. Electrochemical characterizations show that the catalytic activity is increased to 2.8 times, compared to the Pt/C catalyst, which can be ascribed to the electronic effect of Fe. A further evidence for the electronic effect comes from the CO stripping spectroscopy, in which the onset potential for CO oxidation shifts dramatically toward the negative potential side compared with Pt/C. Owing to the bulk-surface differential structure, the chemically dealloyed PtFe/C catalysts exhibits nearly the same stability compared to that of the Pt/C catalyst.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electrochimica Acta - Volume 139, 1 September 2014, Pages 61–68
نویسندگان
, , , , , ,