کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2131277 1086631 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Osteoclast migration on phosphorylated osteopontin is regulated by endogenous tartrate-resistant acid phosphatase
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی تحقیقات سرطان
پیش نمایش صفحه اول مقاله
Osteoclast migration on phosphorylated osteopontin is regulated by endogenous tartrate-resistant acid phosphatase
چکیده انگلیسی

Osteopontin (OPN) is a multifunctional protein implicated in cellular adhesion and migration. Phosphorylation has emerged as a post-translational modification important for certain biological activities of OPN. This study demonstrates that adhesion of isolated neonatal rat osteoclasts in vitro was augmented on bovine milk osteopontin (bmOPN) with post-translational modifications (PTMs) compared to human Escherichia-coli-derived recombinant OPN (hrOPN) without PTMs. The difference in adhesiveness between these OPN variants was more pronounced at low coating concentrations (≤ 10 μg/ml). Both OPN forms adhered exclusively using a β3-integrin. Partial (≤50%) dephosphorylation by tartrate-resistant acid phosphatase (TRAP) in vitro reduced osteoclast attachment to bmOPN to the same level as to hrOPN, demonstrating the importance of specific phosphorylations in OPN-dependent osteoclast adhesion.The involvement of PTMs of OPN in migration of primary rat and mouse osteoclasts was assessed on culture dishes coated with the different OPN forms and then overlaid with gold particles. Here, osteoclasts exhibited haptotactic migration on bmOPN but did not migrate on hrOPN. The presence of neutralizing antibodies to TRAP inhibited migration on bmOPN. Moreover, migration of osteoclasts isolated from TRAP-overexpressing transgenic mice was augmented on bmOPN, but not on hrOPN or type I collagen.These data collectively provide evidence in favor of a role for endogenous TRAP in regulating osteoclast migration on post-translationally modified OPN. In a tissue context, modulation of the phosphorylation level of OPN by extracellular phosphatases, e.g., TRAP, could regulate the extent of degradation such as depth and area at each bone resorption site by triggering osteoclast detachment and facilitate subsequent migration on the bone surface.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Experimental Cell Research - Volume 316, Issue 3, 1 February 2010, Pages 443–451
نویسندگان
, ,