کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
23616 | 43457 | 2013 | 10 صفحه PDF | دانلود رایگان |

The plant kingdom is an underexplored source of valuable proteins which, like plant lectins, display unique interacting specificities. Furthermore, plant protein diversity remains under-exploited due to the low availability and heterogeneity of native sources. All these hurdles could be overcome with recombinant production. A narrow phylogenetic gap between the native source and the recombinant platform is likely to facilitate proper protein processing and stability; therefore, the plant cell chassis should be specially suited for the recombinant production of many plant native proteins. This is illustrated herein with the recombinant production of two representatives of the plant jacalin-related lectin (JRLs) protein family in Nicotiana benthamiana using state-of-the-art magnICON technology. Mannose-specific Banlec JRL was produced at very high levels in leaves, reaching 1.0 mg of purified protein per gram of fresh weight and showing strong agglutination activity. Galactose-specific jacalin JRL, with its complicated processing requirements, was also successfully produced in N. benthamiana at levels of 0.25 mg of purified protein per gram of fresh weight. Recombinant Jacalin (rJacalin) proved efficient in the purification of human IgA1, and was able to discriminate between plant-made and native IgA1 due to their differential glycosylation status. Together, these results show that the plant cell factory should be considered a primary option in the recombinant production of valuable plant proteins.
► A plant recombinant platform (MagnICON) produces high yields of active Banlec and Jacalin proteins.
► Plant-made Jacalin binds native IgA1 and discriminates it from plant-made IgA1 according to differences in glycosylation.
► Recombinant production of JRLs can overcome problems associated to fluctuation in availability and micro-heterogeneicity characteristic of native lectins.
Journal: Journal of Biotechnology - Volume 163, Issue 4, 20 February 2013, Pages 391–400