کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2484981 | 1114342 | 2013 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Development of Polyvinylpyrrolidone-Based Spray-Dried Solid Dispersions Using Response Surface Model and Ensemble Artificial Neural Network
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
Solvent evaporation - تبخیر حلالSpray drying - خشک کردن اسپریPhysical characterization - خصوصیات فیزیکیNonlinear Regression - رگرسیون غیرخطیNeural networks - شبکه های عصبیFactorial design - طراحی فاکتوریلFormulation - فرمولاسیونSolid dispersion - پراکندگی جامدpolyvinylpyrrolidone - پلی وینیل پیرولیدون
موضوعات مرتبط
علوم پزشکی و سلامت
داروسازی، سم شناسی و علوم دارویی
اکتشاف دارویی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A model for spray drying processes was developed using polyvinylpyrrolidone (PVP)-K29/32 as a placebo formulation to predict quality attributes (process yield, outlet temperature, and particle size) for binary solid dispersions (SDs). The experiments were designed to achieve a better understanding of the spray drying process. The obtained powders were analyzed by modulated differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, polarized light microscopy, and particle size analysis. On the basis of the experimental data, a response surface model and an ensemble artificial neural network were developed. Both models showed significant correlation between experimental and predicted data for all quality attributes. In addition, a Pearson correlation analysis, response surface curves, Kohonen's self-organizing maps, and contribution plots were used to evaluate the effect of individual process parameters on quality attributes. The predictive abilities of both models were compared using separate validation datasets. These datasets contained binary SDs of four model drugs with PVP based on root mean square error and mean absolute error for each quality attribute. The results indicate that both models show reliable predictivity for all quality attributes. The present methodology provides a useful tool for designing a spray drying process, which will help formulation scientists save time, drug usage, and resources in the development of spray-dried SDs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pharmaceutical Sciences - Volume 102, Issue 6, June 2013, Pages 1847-1858
Journal: Journal of Pharmaceutical Sciences - Volume 102, Issue 6, June 2013, Pages 1847-1858
نویسندگان
Ashwinkumar D. Patel, Anjali Agrawal, Rutesh H. Dave,