کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2551675 1560663 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
16-Hydroxycleroda-3,13-dien-15,16-olide regulates the expression of histone-modifying enzymes PRC2 complex and induces apoptosis in CML K562 cells
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی کاردیولوژی و پزشکی قلب و عروق
پیش نمایش صفحه اول مقاله
16-Hydroxycleroda-3,13-dien-15,16-olide regulates the expression of histone-modifying enzymes PRC2 complex and induces apoptosis in CML K562 cells
چکیده انگلیسی

AimsHistone modifications play central epigenetic roles in regulating the entire genome of the cell and cell proliferation. Herein, we investigated the effects of the natural compound, 16-hydroxycleroda-3,13-dien-15,16-olide (PL3), on the expressions of histone-modifying enzymes, and examined how it induces apoptosis in leukemia K562 cells.Main methodsCell proliferation was determined by an MTT assay, and histone-modifying enzyme gene expressions were investigated by a quantitative real-time PCR. Protein expressions were analyzed by a Western blot analysis. The histone H3K27 distribution was observed with immunofluorescence staining. To verify polycomb repressive complex 2 (PRC2) complex downstream gene expressions, a gene-expression array was performed to determine gene regulations.Key findingsPL3 induced apoptosis and modulated many histone-modifying enzymes, especially the two PRC2 components, enhancer of zeste homolog 2 (EZH2) and suppressor of zeste 12 homolog (Suz12). Genes repressed by PRC2 were shown to be reactivated by PL3. Of these, 10 genes targeted by the PRC2 complex were identified, and expressions of 10 pro-/antiapoptotic genes were significantly regulated; these effects may have contributed to PL3-induced apoptosis in K562 cells. Regulation of other histone-modifying enzymes, including Aurora B, may also be involved in cell-cycle regulation.SignificanceOur data suggest that the induction of apoptosis by PL3 might partly occur through both a reduction in PRC2-mediated gene silencing and the reactivation of downstream tumor suppressor gene expressions. PL3 acts as a novel small-molecule histone modulator, which can potentially contribute to cancer chemotherapy singly or as a combined medication.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Life Sciences - Volume 89, Issues 23–24, 5 December 2011, Pages 886–895
نویسندگان
, , , , , ,